A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers
نویسندگان
چکیده
Atomic layer deposition (ALD) has been widely reported as a novel method for thin film encapsulation (TFE) of organic light-emitting diodes and organic photovoltaic cells. Both organic and inorganic thin films can be deposited by ALD with a variety of precursors. In this work, the performances of Al2O3 thin films and Al2O3/alucone hybrid films have been investigated. The samples with a 50 nm Al2O3 inorganic layer deposited by ALD at a low temperature of 80°C showed higher surface roughness (0.503 ± 0.011 nm), higher water vapor transmission rate (WVTR) values (3.77 × 10(-4) g/m(2)/day), and lower transmittance values (61%) when compared with the Al2O3 (inorganic)/alucone (organic) hybrid structure under same conditions. Furthermore, a bending test upon single Al2O3 layers showed an increased WVTR of 1.59 × 10(-3) g/m(2)/day. However, the film with a 4 nm alucone organic layer inserted into the center displayed improved surface roughness, barrier performance, and transmittance. After the bending test, the hybrid film with 4 nm equally distributed alucone maintained better surface roughness (0.339 ± 0.014 nm) and barrier properties (9.94 × 10(-5) g/m(2)/day). This interesting phenomenon reveals that multilayer thin films consisting of inorganic layers and decentralized alucone organic components have the potential to be useful in TFE applications on flexible optical electronics.
منابع مشابه
Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition
A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was impr...
متن کاملAtomic/molecular layer deposition of hybrid inorganic-organic thin films
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Pia Sundberg Name of the doctoral dissertation Atomic/molecular layer deposition of hybrid inorganic-organic thin films Publisher School of Chemical Technology Unit Department of Chemistry Series Aalto University publication series DOCTORAL DISSERTATIONS 201/2014 Field of research Inorganic Chemistry Manuscript submitted 11 Se...
متن کاملSurface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers.
The fabrication of many devices in modern technology requires techniques for growing thin films. As devices miniaturize, manufacturers will need to control thin film growth at the atomic level. Because many devices have challenging morphologies, thin films must be able to coat conformally on structures with high aspect ratios. Techniques based on atomic layer deposition (ALD), a special type of...
متن کاملThin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...
متن کاملThin film encapsulation for flexible AM-OLED
Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance ...
متن کامل